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We have developed a two-dimensional maximum entropy spec-
trum reconstruction program designed to run in parallel on work-
station clusters. Test reconstructions of planes extracted from a
three-dimensional NMR data set indicate that the parallel
speedup is nearly equal to the number of processors provided that
the individual processors have comparable performance and that
there are at least as many planes as processors. The program also
works well in a typical laboratory setting consisting of heteroge-
neous workstations. © 1998 Academic Press
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Maximum entropy reconstruction (MaxEnt) is a method of
spectrum analysis that avoids some of the shortcomings of the
discrete Fourier transform (1–3). Other methods with similar
abilities to obtain high resolution spectral estimates from short
data records include maximum likelihood reconstruction (4, 5)
and methods based on linear prediction (6, 7). MaxEnt is more
versatile, however, because it is applicable to spectra contain-
ing arbitrary lineshapes and it does not require data to be
sampled at uniform intervals (8, 9). The ability to reconstruct
spectra from data collected at arbitrary times affords a number
of advantages. For example, nonlinear sampling permits spec-
tra to be obtained using less measuring time than conventional
linear sampling without loss of sensitivity or resolution, or it
can be used to obtain higher resolution or sensitivity in the
same measuring time (8–11). These benefits accrue mainly in
the indirect dimensions of multidimensional experiments,
where an increase in the number of sampled times leads to a
proportionate increase in the total measuring time.

Nonlinear sampling applied simultaneously to more than one
indirect dimension necessitates computation of a multidimen-
sional MaxEnt reconstruction. Because of the significant compu-
tational demands, our previous applications of this approach uti-
lized special-purpose parallel computers (10, 11). Not many NMR
laboratories have routine access to comparable resources; indeed,
the computing environment in most NMR laboratories is more
likely to consist of workstations and personal computers from
different vendors and spanning several generations. In this com-

munication we report the development of distributed parallel
software for computing multidimensional MaxEnt reconstructions
on both heterogeneous and homogeneous networks of worksta-
tions and PCs. Our program is a straightforward implementation
using standard techniques of coarse-grained parallelism. It makes
the benefits of multidimensional MaxEnt reconstruction and non-
linear sampling accessible to a broader range of NMR laborato-
ries. The software is available without charge from the authors
(hoch@rowland.org).

Our program is based on the “Cambridge” algorithm (12);
extension to multiple dimensions is straightforward (13). Typ-
ically, six to eight discrete Fourier transformations as well as
several large inner products are required per iteration, and
convergence occurs within 40 iterations. Intermediate storage
on the order of 16 times the size of the spectrum is required for
efficient computation. For even a modest-resolution spectrum
consisting of 20483 2048 (hypercomplex) points, the inter-
mediate storage requirements for two-dimensional MaxEnt
reconstruction become enormous: 1 gigabyte. Efficient two-
dimensional reconstruction of such spectra remains the prov-
ince of supercomputer-class machines. For individual planes of
three- or higher-dimensional spectra, however, the storage
requirements are more modest. Two-dimensional reconstruc-
tion of a 2563 256 hypercomplex plane requires up to 16
megabytes of intermediate storage, a size that comfortably fits
the amount of random-access memory available on typical
workstations and personal computers. Furthermore, using the
“constant-l” algorithm (14), it is possible to compute a series
of single-plane reconstructions that is equivalent to the more
general 3D reconstruction.

While the reconstruction of an individual plane using a work-
station is practical, the task of reconstructing all of the planes
comprising a multidimensional spectrum remains daunting. When
more than one computer is available, a logical approach is to
distribute the planes among the available computers. Significant
time savings using this distributed parallel scheme can be
achieved if the time necessary for computing the reconstruction of
an individual plane is much greater than the time necessary for
transmitting the input data and the final results between comput-
ers. For a 2563 256 hypercomplex plane, the amount of data that
must be transmitted is less than 2 megabytes: The size of the input
data is usually less than that of the reconstructed spectrum, and the

1 To whom correspondence should be addressed. Fax: 617-497-4627.
E-mail: hoch@rowland.org.

JOURNAL OF MAGNETIC RESONANCE134,161–163 (1998)
ARTICLE NO. MN981514

161 1090-7807/98 $25.00
Copyright © 1998 by Academic Press

All rights of reproduction in any form reserved.



intermediate results do not need to be transmitted. For a conser-
vative transfer rate of 0.1 megabytes/s, the time required for
communication is less than 20 s. Computation of the two-dimen-
sional MaxEnt reconstruction requires several minutes on a mod-
ern workstation; MaxEnt reconstruction of individual planes of a
multidimensional spectrum is thus a reasonable candidate for
distributed parallel processing.

Our implementation of a distributed parallel algorithm for two-
dimensional MaxEnt reconstruction uses a master–slave protocol.
One computer is designated the master and is responsible for
reading in the data, distributing it among the available slave
computers, collecting the results, and writing them out. The mas-
ter is responsible for load balancing, so that a computer that is
slow to complete its task, either by reason of time-sharing with
other users or because the computer is intrinsically slower, will
not adversely affect the time to complete the overall reconstruc-
tion. Tasks (i.e., planes) are assigned to CPUs as they become idle,
and after all the tasks have been assigned, CPUs that become idle
are assigned tasks that are underway but not yet complete. Thus,
a faster processor may complete a task that was initially assigned
to a slower CPU. We utilized the Parallel Virtual Machine (PVM)
library of routines (15) for managing communication between the
master and slaves; this software is freely available and runs on a
wide variety of operating systems and computer architectures.

Our program was tested on two different workstation con-
figurations. The homogeneous cluster consisted of up to eight
Silicon Graphics Power Indigo2 workstations, each containing
one MIPS R10000 CPU clocked at 195 MHz, and intercon-
nected via Asynchronous Transfer Mode (ATM) over 155
Mb/s optical fiber using a Fore Systems ASX-200 switch. Each
individual processor had 1 MB of L2 cache and 128 MB of
main memory and ran under IRIX 6.2. The measured commu-
nication bandwidth (using PVM library calls) was about 8.0
MB/s. The heterogeneous cluster consisted of up to eight
computers (six different processor architectures) intercon-
nected via standard 10 Mb/s Ethernet. The measured band-
width was about 1.0 MB/s. The CPU architecture and operating
system of each computer are listed in Table 1, together with
elapsed times for reconstructing a single plane.

Our test data consisted of 32 planes extracted from a three-
dimensional NMR data set. In the first test, the input data size for
each plane was 503 64 and the output data size was 643 64
hypercomplex points. In the second and the third tests, the input
data size was 503 78 while the output data sizes were 1283 128
and 2563 256, respectively. The amount of intermediate storage
required for the three tests, as measured under IRIX 6.2, was 2, 4,
and 10 MB, respectively. Each test was run eight times, using
different numbers of processors. For the heterogeneous cluster,
processors were added in the order shown in Table 1, which is
roughly the order of CPU speed. The elapsed times and the
speedups (defined as the ratio of the elapsed time for a single
processor to the elapsed time forN processors) are shown in Fig.
1. For the homogeneous cluster, the speedup is nearly equal to the
number of CPUs, which means the efficiency of CPU utilization
is close to 100%. In contrast, the speedup for the heterogeneous
cluster appears to reach a plateau. Comparison with Table 1 shows
that the plateau occurs when the added processors are significantly
slower than those already in use. As a result of the load balancing,
faster CPUs complete their own tasks and then are available to
complete the tasks initially assigned to the slower CPUs. In effect,
the slowest CPUs hardly contribute to the calculation at all. It
should also be noted that there will be no additional speedup when
the number of processors exceeds the number of planes.

In these tests the elapsed time for the homogeneous cluster
is always shorter than for the heterogeneous cluster, which is to
be expected since each of the processors in the heterogeneous
cluster, except for the first one, is slower than the processors in
the homogeneous cluster. For both clusters, the communication
overhead never exceeded 5% of the total time and diminished
as the problem size increased. This overhead is sufficiently
small that there is little reason to consider other schemes for
partitioning the computations. Indeed, a fine-grained parallel-
ism in which each plane is handled by several processors
would be expected to increase the communication overhead
(the nonlocality of the Fourier transform means that the entire
interferogram would have to be transmitted multiple times
among all the processors handling that plane). Finally, we note
that at the time we ran the tests, the workstations were lightly

TABLE 1
Processor Architectures and Configurations of the Computers in the Heterogeneous Clustera

Processor Configurations

Output data size

64 3 64 1283 128 2563 256

195 MHz R10000 1 MB L2 cache, 256 MB main memory, IRIX 6.2 3.4 s 10 s 120 s
175 MHz R10000 1 MB L2, 256 MB main memory, IRIX 6.3 3.9 14 130
180 MHz R5000 512 KB L2, 128 MB main memory, IRIX 6.3 8.4 31 140
166 MHz Pentium 256 KB L2, 32 MB main memory, Windows 95 16 36 140
90 MHz Pentium 256 KB L2, 128 MB main memory, Windows 95 29 69 290
25 MHz RS6000 96 MB main memory, AIX 3.2 39 120 610
33 MHz R3000 80 MB main memory, IRIX 4.0.5 60 170 660
20 MHz SPARC 1 24 MB main memory, SunOS 4.1.3 160 450 1700

a Elapsed times are shown for three single-plane reconstructions.
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loaded. Nevertheless, they are all multitasking systems and the
networks connecting them are also shared, both of which limit
the precision of our test results.

We have demonstrated the feasibility of performing maxi-
mum entropy reconstructions in parallel on clusters of work-
stations and PCs. CPU utilization is nearly optimal, with
slower CPUs contributing relatively less to the overall perfor-
mance, as one would expect. Nevertheless, using this approach,
the eclectic collection of computers found in a typical labora-

tory can be used to perform difficult multidimensional maxi-
mum entropy reconstructions.
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FIG. 1. Elapsed times and speedups for the MaxEnt reconstructions of 32
planes as a function of the number of processors. Elapsed times for the
heterogeneous cluster (■), for the homogeneous cluster (F). Speedups for the
heterogeneous cluster (h), for the homogeneous cluster (E). Output data size
is (A) 64 3 64 hypercomplex points, (B) 1283 128, (C) 2563 256.
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